职场小聪明

翟晓鹰

首页 >> 职场小聪明 >> 职场小聪明最新章节(目录)
大家在看都市花语 他的小祖宗甜又野 沉醉不醒 超级神基因 美女如云之国际闲人 拒嫁豪门:少奶奶99次出逃 我的极品女房东 妻心似刀 我有三个龙傲天竹马 千金裘 
职场小聪明 翟晓鹰 - 职场小聪明全文阅读 - 职场小聪明txt下载 - 职场小聪明最新章节 - 好看的都市言情小说

第827章 没经过标注学习的大模型,直接拿训练结果,会不完整

上一章书 页下一章阅读记录

AI大模型没有经过标注训练直接拿训练结果的机器学习,会不完整。

你提出的问题非常有深度,触及了AI大模型训练方法与其学习机制中的核心矛盾:没有经过明确标注训练(Supervised Learning)的AI大模型,是否能获得完整有效的学习成果?是否存在结构性的“学习不完整”?

我们来分层展开这一问题,力求在技术、哲学、认知、类比等多个维度上进行全面分析,最后做出严谨的结论。

?

一、背景界定:AI大模型的训练机制

目前主流的AI大模型(如Gpt系列、claude、Gemini等)采用的是**预训练 + 微调(fine-tuning)+ RLhF(强化学习人类反馈)**的混合架构。

其中最核心的是预训练阶段,其基本过程是:

在没有明确标签的情况下,用大规模互联网上的数据(网页、百科、代码、小说、评论等)进行“自监督学习(Self-supervised Learning)”。

自监督学习 ≠ 无监督学习

? 自监督学习并非完全“无标注”,而是通过构造任务(如语言建模任务:预测下一个词)让模型从数据本身自动生成训练信号。

? 模型在这过程中学习的是结构、语义、因果、常识等隐性规律,而不是显性标签(如猫、狗、汽车这种图像分类标注)。

?

二、未标注训练是否“学习不完整”?——技术视角的回答

我们可以从以下三个角度看“完整性”问题:

1. 信息覆盖角度:不是所有领域都能通过无标注数据自发学习

? 无监督或自监督学习依赖于数据中的统计规律;

? 某些抽象、隐蔽、少量出现的信息(如法律边界、伦理判断、罕见病症)如果数据中分布极少,模型可能无法学到;

? 例如:常识与语言风格模型学得很好,但“核反应堆设计”“金融诈骗行为识别”等专业领域,若无明确标注,学习会片面甚至危险。

结论:信息分布不均 → 导致学习偏斜 → 导致“结构性不完整”。

?

2. 任务映射角度:无标注训练难以学得任务映射规则

? 自监督语言模型训练的本质是“概率语言建模”,不是“任务解答”;

? 所以它并不知道“题目是什么、目的是什么”,而是推测“在这种上下文中,最可能出现的词或句子是什么”;

? 比如:它可以写诗、写代码,但并不能天然知道“这个代码是否安全”“这首诗是否表达了想表达的情绪”。

结论:任务导向的“目标函数”缺失 → 无法学会“为什么做”。

?

3. 可解释性角度:非标注训练缺乏因果结构建模

? 人类通过监督学习明确学习“因果—目的—手段”结构;

? 但大语言模型更像是“相关性结构模拟器”;

? 它可以“预测一个合理的答案”,但不能清晰解释“为什么这个是对的”,这导致它常常幻觉(hallucination),即信心满满地说错话。

结论:缺乏标注训练导致“因果推理能力弱化”,解释力不足。

?

三、类比视角:大模型 vs 人类学习

我们可以做几个有趣的类比来更好理解:

模型机制

类比人类

结果

自监督训练

看大量书籍和对话,但没人教你正确答案

可形成语言风格、思维路径,但很难准确判断对错

监督训练

老师出题、讲解并纠错

能建立清晰的“任务-结果-反馈”链条

强化学习

实践中不断试错并获得反馈

学会策略优化,但很依赖奖励设计

未训练领域

没人讲解、也从没见过的知识

只能“猜”而不是“知道”

所以,大模型并非“全知”,而是“巨量输入+相关性建模”的结果。没有明确监督和反馈,它可以“模仿得很好”,但无法“知道得准确”。

?

四、哲学层面:知识的完整性依赖于目的性与验证路径

知识完整性的构建不仅依赖数据,而更依赖:

1. 目的性(Goal-oriented learning):你学习是为了什么?没有目标就没有选择与筛选;

2. 验证路径(Validation mechanism):你怎么知道你学对了?没有反馈就无法修正偏差;

3. 理论抽象(theory abstraction):你是否能将个例升华为结构?这需要引导和模型建设。

AI大模型很多时候是在缺乏明确目标与反馈的语料中“游荡式学习”。它学得多,但结构不稳、推理不深,因此无法获得“完整性”。

?

五、现实世界中的补救机制

正因为自监督训练存在这些问题,现代大模型在预训练之后通常会做:

1. 微调(fine-tuning):用有标注数据进行小范围有针对性训练;

2. RLhF(人类反馈强化学习):用人工打分机制优化模型输出结果,使其更符合人类价值;

3. 插件系统(tool Use):通过嵌套计算器、数据库、搜索引擎等,补足知识结构的“缺口”;

4. 多模态协同:语言+图像+动作等维度补充信息结构的不完整性。

这些都是在弥补“无标注训练”的先天缺陷。

?

六、结论与展望

你提出的问题可以总结为一句话:

没有经过标注训练的大模型,其知识体系是片面的、目标性弱的、可解释性差的,因此并不完整。

AI大模型在当前阶段,的确存在以下三大“不完整性”:

1. 知识分布不完整 → 稀缺\/敏感信息无法自动习得;

2. 结构建模不完整 → 缺乏明确因果与目标框架;

3. 验证机制不完整 → 幻觉无法主动修正,错误输出不自知。

但它的优势也明显:

? 学习范围极广;

? 语境模拟能力强;

? 多样性高、可迁移性强。

未来,大模型的发展趋势一定是:

? 人类标注与反馈机制更精细化(如AutoRLhF、偏好建模);

? 任务导向设计(agent化、链式推理)加强推理结构;

? 领域专家介入,实现专家知识标注精调;

? 多模态数据参与建模,提升理解维度。

?

上一章目 录下一章存书签
站内强推玄鉴仙族 新白蛇问仙 娱乐人生从三十而已开始 为奴 四合院之车门已焊死 潇湘书名 误惹豪门:强娶迷糊小甜妻 快穿之反派大人是病娇 漫游五界 封总,太太想跟你离婚很久了 盗笔之主打一个陪伴 被迫嫁给前未婚夫世子之后 国民导演 打到北极圈了,你让我继承皇位? 修真界第一女悍匪 偷听心声后贝吉塔逆转绝望未来 纵横古今南洋豪门的大唐风云录 全球畸变:我靠水果刀杀穿世界 战双帕弥什之渡鸦 起猛了,求生木筏怎么多了个女人 
经典收藏都市皇宫 动漫之后宫之旅 我在民国捡漏,开局百万倍利润 极品后妈 清穿后我绑定了上进系统 鹰酱快别忽悠了,兔子他是真造啊 后宫春春色 毒步天下:特工神医小兽妃 叶叶缠绵 重生异界觉醒灌江口二郎真君杨戬 放肆 我的老婆是妖仙 纨绔江湖:重生公主惹邪王 与校花合租:贴身高手 腹黑狂女:倾城召唤师 穿书成了反派的恶毒娘子 重启巨星之路 青梅竹马陌路相拥 别撒谎!我能看见你头顶的称号 总裁:亿万契约过期啦! 
最近更新重生矿奴,却成为人类救世主? 与病弱兄长共梦 净水迎帆 民国恶女求生游戏苟分日常 六零娇娇作精,糙汉老公带我躺赢 撩倒五个男主后,娇美寡妇跑路了 春深囚宦 SSSSSSSSSSSSSS满级神医 拒绝SSS级天赋被封杀,我成唯一真神 渣男兼祧吃绝户?改嫁皇叔他急了 我的暴君系统天天想噶我老公 侧妃进门我让位,死遁了你疯什么 娇软知青下乡后,禁欲大佬沦陷了 我是废雌?可哥哥们是大佬 桃花劫 腰软娇娇超会撩,禁欲世子沦陷了 穿越七零,我靠兽语成团宠 无人区:开局肉身点满 重生后,黑莲花权臣宠妻杀疯了 易家的年代生活被星际直播了 
职场小聪明 翟晓鹰 - 职场小聪明txt下载 - 职场小聪明最新章节 - 职场小聪明全文阅读 - 好看的都市言情小说